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1. Introduction 

Li-CFx batteries are proposed for use in Soldier applications where a high specific energy 
primary power source is needed. Li-CFx D-cells have demonstrated the rate capability necessary 
for Soldier applications (2, 3, 4, 5). One problem that needs to be addressed is the heat generated 
on discharge, which can be significant at higher discharge rates (3, 4). Microcalorimetry on Li-
CFx cells (6) has been carried out, but a more detailed examination is warranted. 

 Li + CF1.0 → C + LiF Eo = 4.57V (1) 

The overall discharge reaction of a Li-CFx cell is shown in equation 1. The Eo value is given by 
Wood et. al. (1). for a CF1.0 material.  The open circuit voltage (OCV) of a Li-CFx cell is 
normally 3.1–3.6 V, significantly lower than the theoretical value above. This difference between 
theoretical potential and the observed OCV has been ascribed to the formation of ternary phases 
(7, 8) such as CLixF or CFLix:Sy where S is a solvent molecule that is co-intercalated with a 
lithium ion. It is proposed that the kinetics for formation of an intercalated phase is more 
favorable than the kinetics of the direct two phase reaction. It is also proposed that the resulting 
intercalated phase decomposes over time to produce the final products carbon and LiF. The 
significant amount of heat generated by a Li-CFx cell would therefore be expected to follow the 
kinetics of this decomposition reaction. One might also assume that this reaction is slow enough 
to observe using microcalorimetry. 

This work investigates the thermal powder behavior of Li-CFx cells under intermittent discharge 
to try and observe the kinetics of the decomposition reaction. The thermal power behavior was 
also studied as a function of depth of discharge and rate of discharge with three different CFx 
materials. The commercially available CFx materials evaluated in this work were prepared by 
high temperature fluorination of coke, carbon black, and carbon fiber precursors. The chemical 
compositions were similar with total fluoride contents in the range of 62.5-64.5 wt% (CF1.05 – 
CF1.15). The materials have different physical properties such as true density, particle size, 
surface area, and decomposition temperature. 

2. Experiment 

CFx materials were obtained from Advanced Research Chemical and were designated ARC 1000 
(coke), ARC 2065 (carbon black), and ARC 4000 (carbon fiber). Table 1 gives the physical and 
chemical properties of the materials. Cathodes were prepared by mixing CFx, PVDF, carbon 
black, dibutylphthalate, and acetone in a stainless steel blender cup. The slurry was cast on glass 
and dried in air. The plasticized films were laminated to treated aluminum grids and then 
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extracted in methanol. The extracted cathodes were 75% CFx, 10% carbon black, and 15% 
PVDF. Cathodes were dried under vacuum at 105 °C for 2 hr before use. Cells were constructed 
from coin cell hardware using 0.020 in lithium, 2 layers of Celgard separator, and 1M LiBF4 
propylene carbonate: 1,2-dimethoxyethane electrolyte. Cells were crimp sealed, the impedance 
was measured, and cells were placed in an aluminum cell holder that provides improved heat 
transfer from the cell to the microcalorimeter. The aluminum holder was electrically insulated 
from the metal microcalorimeter chamber using several thin sheets of mica and non-conductive 
heat sink compound. The cell holder was at the bottom of a battery testing insert that fits into the 
microcalorimeter and that has 3 thermal breaks and a thin channel used to get leads from the 
microcalorimeter to the Maccor Series 4000 tester. The microcalorimeter is a Calorimetry 
Sciences Corporation Model 4400 Isothermal Microcalorimeter operating at a nominal 25 °C. 
The practical resolution of this microcalorimeter was ±10 µW and this limited the low end of the 
discharge rate regime chosen. The cells were allowed to equilibrate for 12 hr in the 
microcalorimeter and then they were discharged approximately 10% of their full capacity, at 
rates between 5 and 40 mA/g, and then allowed to rest at open circuit for 3 hr before the next 
discharge. Cells were discharged multiple times until all of the capacity was removed or the 
voltage dropped below 2.0 V. 

Table 1. Physical and chemical properties of CFx materials tested. 

Property ARC 1000 ARC 2065 ARC 4000 
Carbon Source Petroleum Coke Carbon Black Carbon Fiber 
Total Fluoride % 62.6 64–65 63.5 
Color Light Gray White Light Gray 
Median Particle Size, mm 8 < 1 6 
BET Surface Area, m2/g 139 350 323 
Micropore Surface Area, m2/g 78 82 92 
External Surface Area, m2/g 61 268 230 
Decomposition Temp., oC 672 660 659 

 

3. Results and Discussion 

Figure 1 shows discharge curves for the coke based CFx material at four different rates. The 
spikes in the voltage are the 3 hr rest periods between each 10% discharge. The results show a 
material that has a small but significant change (130 mV) in running potential as a function of a 
large change in discharge rate (5–40 mA/g). The electronic resistance of the cell was calculated 
from the 10 ms voltage change that occurs before and after each rest period. The voltage drops 
were usually 10–20 mV which does not account for the 130 mV shift seen. This indicates that 
although there is some effect on cell polarization due to the strictly electrical resistances of the 
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cell, another factor is leading to the larger polarization seen between the OCV at 3.1 V and the 
running potential at 2.5–2.6 V. 
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Figure 1. Voltage versus specific capacity of Li-CFx cells at four discharge rates. 

Figure 2 shows the discharge voltage and microcalorimeter response as a function of time for a 
cell discharged at 20 mA/g. In this figure, the 3 hr rest periods are obvious. The figure shows that 
the thermal power generated by discharge mirrors the electrical power delivered by the cell 
almost exactly. The data in figure 2 also allows for the calculation of the I2R heat from the 10 ms 
voltage drops. The I2R heat averages 28 µW, only about 1% of the total thermal power output 
from the cell. Figure 3 shows an overlay of the thermal power curves for each successive pulse 
from the data in figure 2, with the first and last pulse left out for clarity. The data shows that heat 
generation begins immediately upon discharge and reaches 98% of its steady state value within 
20 min. The heat generation ceases immediately when discharge is stopped, with 98% of the 
steady state value being reached within 25 min.  This indicates that if a ternary intercalation 
phase forms, it decomposes extremely rapidly. These 20 min lag times are consistent with the 
measured time constant of the microcalorimeter itself and, therefore, are not an indication that an 
intercalated phase persists. The time for the cell potential to reach a steady state value is 5 min 
on discharge.  After discharge ceases, the cell does not reach a steady state open circuit voltage 
even after 3 hr. It appears that the open circuit potential and the heat generation are not 
correlated. 
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Figure 2. Li-CFx cell voltage and thermal power (mW) versus time for 20 mA/g discharge rate. 
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Figure 3. Overlay of thermal power during each discharge pulse for the 20 mA/g discharge rate. 
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One interesting aspect of the data is how the thermal power is nearly independent of discharge 
state. Figure 4 shows the thermal power for each discharge step normalized to the weight of CFx 
in the cathode. One can see small changes in the thermal power output at the beginning and the 
end of discharge that are reflected in the cell polarization, but otherwise it is constant. This 
constancy points to a 2 phase reaction mechanism for discharge where no significant amount of 
intermediate phase forms.  
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Figure 4. W/kg of active CFx material at 40, 20, 10, and 5 mA/g. 

Table 2 summarizes the discharge data and also gives values for quantities calculated from the 
data. The running voltage is taken from the curves in figure 1 and represents the highest point on 
the discharge curve.  The heat in J/mAh is calculated by integrating the thermal power curves 
over time. The theoretical OCV is obtained by first calculating ∆G from the heat in KJ/mol e– 
and T∆S, where ∆S is taken from Wood, et al. (1) for the reaction of Li and CF1.0. This value is 
converted into a potential using ∆G = nFE and added to the running potential and the 10 ms IR 
drop to get a theoretical OCV. These OCV values agree well with the values of Wood et.al. (1). 

Table 2. Summary of values from calorimetry and discharge data. 

Rate (mA/g) 40 20 10 10 5 
Average J/mAh 7.08 6.89 6.68 6.74 6.55 
Heat (KJ/mol e–) 186.7 178.7 178.7 179.1 174.8 
Running Voltage 2.479 2.574 2.574 2.566 2.608 

Theoretical OCV 4.470 4.466 4.466 4.467 4.463 



 

6 

 
As stated before, the change in cell polarization with discharge rate is not related purely to the 
electrical resistances in the cell, as this can account for only 20 mV of polarization even at 
40 mA/g. Most of the cell polarization is related to the overpotential associated with the 
discharge reaction. When the change in heat output between different discharge rates is 
converted to a voltage using ∆G = nFE, the voltage drop seen between cells at different rates can 
be accurately predicted. In addition, when the heat in KJ/mol e– is plotted against running 
potential, one obtains figure 5. The data falls on a straight line that, when extrapolated back to 
zero heat, results in the theoretical OCV for the Li/CFx system of 4.2 V. This result would mean 
that both the running potential and the OCV are the result of a large activation barrier for 
discharge, and that the polarization seen as a function of discharge rate is simply an extension of 
this. 
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Figure 5. Correlation between running voltage and heat output in KJ/mol e–. 

The other CFx materials, ARC 2065 and ARC 4000 were tested under conditions identical to the 
ARC 1000 material with the results for the 40 mA/g rate shown in figure 6. The ARC 2065 
material shows less polarization on average than the ARC 1000 material with lower Joules/mAh. 
The ARC 4000 material shows more polarization than the ARC 1000 material, but interestingly 
lower Joules/mAh as well. Plots of running voltage against heat in KJ/mol e– give results similar 
to figure 5 with linear fits for both the ARC 2065 and ARC 4000 materials. The theoretical OCV 
by extrapolation for the ARC 2065 material was 4.32 V and for the ARC 4000 material was 4.20 
V. The difference in thermal behavior between the three materials is relatively small, about 1–
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2% depending on how it is calculated. A graph incorporating all of the data shows that the three 
materials occupy a range of heat/capacity values between 6.3 and 7.0 J/mAh depending on 
discharge rate with only one exception, the 5 mA/g ARC 2065 cell, falling outside this range. 
This result would be surprising if one assumes that the discharge reaction takes place through the 
formation of an intercalate, since it is expected that physical properties such as surface area and 
particle size should influence the intercalation kinetics. The result is more understandable if one 
assumes that discharge takes place through a two phase reaction, as this will depend mainly on 
the chemical properties of the materials. 
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Figure 6. Voltage versus specific capacity and J/mAh. Comparison of ARC 1000, ARC 2065, and ARC 
4000 at 40 mA/g.  

4. Summary and Conclusions 

This study shows that the thermal power of Li-CFx cells is highly rate dependent, but nearly 
independent of the state of discharge. Intermittent discharge data shows how heat generation 
starts immediately when discharge begins and ceases almost as quickly when discharge is 
stopped. There is no significant tail in the thermal power curve that could be interpreted as the 
decomposition of an intercalation compound. Extrapolation of the running potential versus heat 
to a zero value results in an OCV of 4.25 V, very near the theoretical potential calculated by 
Wood et al. (1). The calorimetry results on three physically different CFx materials turn out to be 
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nearly identical. This shows that physical properties, such as surface area and particle size, have 
almost no effect on the heat produced and that chemical composition is probably more important. 
The results of this study suggest that the discharge mechanism is simply a two phase reaction 
where the large activation energy needed to break C-F bonds results in significant overpotential 
on discharge. 
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